The Identification of Terrains for Mobile Robots Using Eigenspace and Neural Network Methods

نویسندگان

  • Edmond M. DuPont
  • Rodney G. Roberts
  • Carl A. Moore
چکیده

Today’s autonomous vehicles operate within an increasingly larger set of environments compared to earlier research in which environments were more controlled. In particular, unmanned ground vehicles (UGV’s) must be able to travel on whatever terrain the mission offers, including sand, mud, or even snow. These terrains can affect the performance and controllability of the vehicle. Like a human driver who feels his vehicle’s response to the terrain and takes appropriate steps to compensate, a UGV that can autonomously perceive its terrain can also make necessary changes to its control strategy. This article focuses on the development of a terrain detection algorithm based on features extracted from terrain induced vehicle vibration. Research is conducted to reduce correlation of traversing terrains at different speeds. Procedures are presented to remove the dependencies of speed through eigendecompositon methods and applying the probabilistic neural network for classification between nonlinear boundaries. Experimental results based on iRobot’s ATRV Jr demonstrate that the algorithm is able to identify multi-differentiated terrains broadly defined as grass, asphalt, and gravel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning

The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...

متن کامل

Motion detection by a moving observer using Kalman filter and neural network in soccer robot

In many autonomous mobile applications, robots must be capable of analyzing motion of moving objects in their environment. Duringmovement of robot the quality of images is affected by quakes of camera which cause high errors in image processing outputs. In thispaper, we propose a novel method to effectively overcome this problem using Neural Networks and Kalman Filtering theory. Thistechnique u...

متن کامل

Representing a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors

Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...

متن کامل

Representing a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors

Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006